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Denoising of event-based sensors
with deep neural networks

ABSTRACT

We propose two learning-based methods for the denoising of
event-based sensor measurements:
 ConvDAE : convolutional denoising auto-encoder

* Based on the convolutional neural network (CNN)

METHODS

ConvDAE: convolutional denoising auto-encoder
The basic structure of ConvDAE is a simplified U-Net, with only
one convolutional layer in each encoding or decoding layer.

Dropout layer corrupted original images and nearest neighbor

RESULTS

we demonstrate the effectiveness of proposed ConvDAE and
SegRNN with N-MNIST dataset, which Is collected by
capturing static images In classical computer vision dataset

MNIST with a moving event camera.

« Compatible with existing image-based deep denoisers filter pre-denoised reference images serve as input and “ground

truth” respectively. Original: images mapped from original event sequences;

and high-level vision tasks
Reference: reference images mapped from the pre-denoised

28"28*1 28*28*1 28*28*32

 SegRNN: sequence-fragment recurrent neural network 2828'6428'28"1
. Based on the recurrent neural network (RNN) event sequences via nearest neighbor filtering (NNF).
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better in distinguishing the signal and noise especially around

time SegRNN: sequence-fragment recurrent neural network
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g. 4 The denoising results of SeqRNN.

art 1s composed of three fully connected layers and a . . . .
P P Y Y The noise shown In the original event segments can be filtered

softmax layer. Original event segments and nearest neighbor out clearly by SegqRNN, which meanwhile outperforms the NNF

filter pre-denoised reference event segments serve as Input . . .
algorithm Iin some detalils.
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and “ground truth” respectively.

standard camera

event camera

Softmax layer

We come up with two learning-based methods named
ConvDAE and SegRNN for the denoising of event camera data,
and demonstrate their effectiveness and flexibility with real data
experiments.

As light-weight denoisers, CNN-based ConvDAE and RNN-
based SeqRNN can be easily adapted to image-based and
event-based downstream tasks’ solutions, respectively

Fig. 1 The working mechanism of the event camera and its comparison ‘
with standard frame-based cameras. ‘ rully connected layers

A novel neuromorphic imaging sensor

 Responses only to brightness changes asynchronously LS [ ST [ ST [ L

 The output Is a stream of events containing positions,

In the future, we will test the proposed methods on more

time, and polarities (£1)

complicated datasets, and evaluate their denoising

 Features: low power consumption, low latency, HDR, but

performance based on their assistance for the

Fig. 3 The architecture of the proposed sequence-fragment recurrent
neural network (SegRNN).

noisy
downstream high-level vision tasks.
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